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Abstract

Resonant phase-locking phenomena (‘autoresonance’) in the van der Pol–
Duffing oscillator forced by a small amplitude periodic driving with slowly
varying frequency have been studied. We show that autoresonance occurs for
oscillators with sufficiently small damping, when the system may have bi-stable
states. We find the range of parameters of the oscillator, the thresholds and
the appropriate control paths where autoresonant excitation of high amplitude
oscillations is possible.

PACS numbers: 05.45.Xt, 52.36.Mw

1. Introduction

The phase-locking phenomena for a nonlinear pendulum with a small periodic driving were
first studied in [1, 2] as a model for the acceleration of relativistic particles. The main idea of
the approach is to drive the oscillator by a periodic forcing with a slowly chirping frequency in
the vicinity of resonance. If the amplitude of the drive exceeds some threshold value, the phase
of the oscillations can be locked by the driver, which allows us to effectively excite and control
the oscillator via slow variation of the driving frequency. Resonant phase-locking phenomena
(also referred to as ‘autoresonance’) are to date widely applied to various physical problems,
which are associated with nonlinear oscillators. A wide range of applications, including
plasmas and planetary dynamics is discussed by Fajans and Friedland [3]. The approach has
been extended to infinite-dimensional systems, such as vortex dynamics [4] and nonlinear
waves [5]. In a magnetized plasma it was demonstrated that externally excited oscillations via
the phase-locking mechanism are effective in controlling various instabilities, e.g., the current
driven instability [6], flute type instabilities [7] and drift wave instabilities [8]. In the first two
mentioned cases the dynamics and phase locking was well described by the forced van der Pol
equation. The approach may alternatively be used to the recently studied methods of control
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of dissipative oscillators (see, e.g., [9]). A similar problem without driving, but with chirping
of the main frequency was addressed by Meerson and Shinar [10].

In spite of the extensive studies of ODE’s with slowly varying parameters (see, e.g.,
the recent review [11]) the problems of the phase locking by an external driving and the
associated threshold phenomena are far from being solved. So far most investigations of the
autoresonance have dealt with dissipationless problems. The paper of Chirikov [12] at first
gives an adequate theory for the thresholds needed for phase locking to occur in the driven
nonlinear pendulum. The modern mathematical aspects of this problem have been investigated
in [13, 14]. Nevertheless, it has been anticipated [15, 16] that a small linear dissipation will
preserve the main features of the autoresonance, but generally no expression for the threshold
was proposed. However, for a dissipative system applied to plasma oscillations, discussed in
[17], the threshold for autoresonance was estimated and was found to be in good agreement
with experimental observations.

In the present work we focus on qualitative studying and detailed numerical simulation
of the phase-locking phenomena in damped and driven systems. We base our investigation on
the van der Pol–Duffing oscillator

ü + u + μu3 − γ (1 − σu2)u̇ = 2ε cos � (1)

driven by a small periodic forcing with amplitude ε � 1 and slowly varying frequency

�̇ = 1 + �(t). (2)

We will assume a linear chirp of the frequency

�(t) = αt.

In equation 1, the parameter γ designates the linear growth or dissipation rate depending on
the sign, μ(>0) is the nonlinear frequency shift and σ(> 0) is a nonlinear dissipation. The
slow variation implies d�/dt = α � 1. Additionally, we assume that the parameters μ, γ

and γ σ are small.

2. Averaged equations

Let us introduce new variables

u(t) = A(t) cos(t + φ(t)), u̇(t) = −A(t) sin(t + φ(t)), (3)

where the amplitude A and the phase φ are supposed to be slow functions of time in accordance
with the assumption of smallness of parameters in the basic equations (1)–(2). The standard
averaging method [18] provides equations for the new variables

Ȧ = 1

8
γA(4 − σA2) − ε sin 	, (4)

	̇ = −�(t) +
3

8
μA2 − ε

A
cos 	. (5)

Equations (4) and (5) are the generalizations of the so-called ‘principal resonance equations’
[19], which are the main object of study in autoresonant theory [3, 13, 14], to the van der
Pol–Duffing system. The phase 	(t) in equations (4)–(5) is the difference between the phase
of the solution (3) and the forcing:

	 = φ(t) −
∫ t

�(t) dt. (6)
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Figure 1. The amplitude A0 of stationary solutions of the averaged equations as functions of the
frequency �. (a) μ = 0.0267, γ = 0, ε = 0.02; (b) μ = 0.0267, γ = −0.0096, σ = 0, ε = 0.02;
(c) μ = 0.134, γ = 0.0008, σ = 50, ε = 0.05.

Now let the frequency shift � be a constant. Then, equations (4)–(5) have stationary
points (A0(�),	0(�)) defined by the equations

1

8
γA0

(
4 − σA2

0

)−ε sin 	0 = 0, (7)

−� +
3

8
μA2

0−
ε

A0
cos 	0 = 0. (8)

These points give steady cycles of the original equation (1). But not all cycles are stable. We
will study the stability in the framework of equations (4)–(5). Introducing small perturbations
of a stationary point A = A0 +δA,	 = 	0 +δ	 and supposing the dependence δA, δ	 ∼ eλt,
we obtain from (4)–(5) the quadratic dispersion equation

λ2 −
[

ε

A0
sin 	0 +

1

8
γ
(
4 − 3σA2

0

)]
λ +

1

8
γ
(
4 − 3σA2

0

)
× ε

A0
sin 	0 + ε cos 	0

[
3

4
μA0 +

ε

A2
0

cos 	0

]
= 0. (9)

The steady solution (A0,	0) will be stable if Re λ � 0.
Typical solutions, A0(�), of equations (7)–(8) are shown in figure 1, for the three different

sets of parameters which will be investigated in this paper:
(a) dissipationless case, γ = 0,
(b) simplest linear dissipation, γ < 0 and σ = 0,
(c) van der Pol–Duffing case, γ > 0 and σ > 0.
We suppose that in all the cases α � 0, μ � 0 and ε � 0. The solid line parts of

the curves in figure 1 represent stable solutions (Re λ � 0), and dashed lines correspond to
unstable solutions (Re λ > 0).

In the dissipationless case (a), the route to excite high amplitude oscillations in the vicinity
of the line BC in figure 1(a) is to apply the forcing at a very low amplitude and sweep the
frequency �(t) = αt from a negative value, i.e., to start at a large negative time t0. It is
obvious that such a result cannot be obtained by excitation with a constant frequency � � �∗
(�∗ being defined in figure 1), because in this case one can attain only the low amplitude
near the line DE. The appropriate controlling path has to use a slowly varying frequency
(2) [3]. Starting from the time t0 one crosses the resonance �̇ = 1 at t = 0 and, then,
forces the solution to move in the vicinity of the stable curve BC to excite a high amplitude
oscillation. It is important to note, that this development can only be realized when α is less

3
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than some critical value αcr ∼ ε4/3 [3]. The physical mechanism of the phenomenon is the
phase locking of the excited oscillations by the forcing. In the following section we study new
aspects of this phenomena, which allow us to extend the phase-locking approach to dissipative
systems of types (b) and (c).

The amplitude curves for the dissipative cases are shown in figures 1(b) and (c). The
main difference from the previous case (where Re λ = 0) is that now Re λ < 0 and the stable
parts of the curves associate with attractive behavior of the system (4)–(5). For any fixed �, a
zero initial solution tends to the corresponding point A0(�) on the curve. But again, the high
amplitude solutions on the curve BC are not directly attainable. One notes that in the van der
Pol–Duffing case (c) the small amplitude oscillations are unstable themselves and the range of
stable limit cycles are restricted to a finite interval of � where A2

0 � 2/σ . It will be shown in
the following that phase locking in the dissipative cases is also possible with some restrictions
on the parameter α and for specific controlling paths.

It is important to note that in the dissipative cases the phase-locking approach has meaning
only if the function A0(�) is multivalued in some regime, like the curve BCD in figure 1. In
the dissipationless case the point C moves out to infinity. This is the case for a sufficiently
small dissipation. In case (b), the exact limitation is

|γ | <
(

3
2με2)1/3

. (10)

In case (c), the limitation is more sophisticated, but the simplified sufficient condition reads

γ � 3μ

σ
. (11)

For larger γ the curves become single valued and any � corresponds to one unique value of
A0. In this case no specific control path is needed to excite high amplitude stable cycles. The
simplest setup with constant � is sufficient to attain any admissible amplitudes.

Let us return to the dynamical equations (4)–(5). Differentiating equation (5) and
eliminating Ȧ by equation (4) we obtain the equation for the phase difference, 	 between the
excited oscillations and the forcing

	̈ = −∂U

∂	
+ 	̇. (12)

This resembles the equation of motion for a ‘quasi-particle’ with coordinate 	 located in the
effective potential

U(A,	) =
[
α − 3

32
μγA2(4 − σA2)

]
	

−3

4
μεA cos 	 − εγ

8A
(4 − σA2) sin 	 − 1

4

ε2

A2
cos 2	 (13)

and with the dissipation coefficient

(A) = − 1

A

dA

dt
+

1

8
γ (4 − σA2). (14)

These equations contain the amplitude A as a parameter. One can see that the potential U
may have minima in some range of A if the forcing has a sufficiently large amplitude ε. In this
case the ‘quasi-particle’ can be trapped in a potential well, which implies, in accordance with
the definition (6), that the phase difference between forcing and excited oscillations is bounded,
i.e., the oscillations are phase locked. Thus, the existence of minima in the effective potential
(13) is a necessary condition for phase locking. It becomes sufficient only for appropriate
initial conditions in (4)–(5), which then constrains the system to be phase locked.

4
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3. Oscillator without dissipation

When γ = 0, the minima of the effective potential (13) are located in points where

dU

d	
= α +

(
9

32
μA +

ε

A2
cos 	

)
ε sin 	 = 0. (15)

Because the variation of the amplitude A is not limited in this case (see figure 1(a)), we have
to find a sufficient condition for the existence of the minima for any A.

There is a minimum in some range [	1,	2], if dU/d	 has different signs at 	 = 	1

and 	 = 	2. That is the following two inequalities should hold:

α + ε

(
9

32
μA +

ε

A2
cos 	1

)
sin 	1 < 0, (16)

α + ε

(
9

32
μA +

ε

A2
cos 	2

)
sin 	2 > 0. (17)

It is obvious that the inequality (17) has solutions 	1 ∈ (0, π/2) for any A > 0.
To consider (16) we introduce the function

f (	,A) = −ε

(
9

32
μA +

ε

A2
cos 	

)
sin 	. (18)

For a given A > 0, f is bounded as a function of 	. The inequality (16) certainly will have
solutions if

α < max
	

f (	,A) = F(A). (19)

The maximum value of (18) will be at

cos 	 = cos 	+ = − 3μ

16ε
A3 +

√(
3μ

16ε

)2

A6 +
1

2
(20)

and, thus,

F(A) = f (	+, A). (21)

The function F(A) tends to infinity at A → 0 and A → ∞ and have a minimum at
A3 = 4ε/3μ. Then, we have the sufficient condition for which the effective potential (13) has
minima for all A > 0:

α < αcr = F([4ε/3μ]1/3) = 313/6

210/3
μ2/3ε4/3

≈ 1.072μ2/3ε4/3. (22)

In the opposite case, when the threshold condition (22) is violated, α > αcr, there is a finite
gap [A1, A2] where the effective potential has no minima.

The dynamics of the system is shown in figures 2 and 3 for two different initial conditions.
We use the linear dependence �(t) = αt and distinguish initial conditions by the starting times:
t0 = −400 and t0 = 0. In both cases we used A = 0.001 and 	̇ = 0 at the starting point
t = t0. The latter condition implies 	(t0) ≈ −π/2 and follows from the requirement that the
solutions of (4)–(5) should be slow in time. Initial conditions for equation (1) were adjusted
with (4)–(5) according to the relation (3). The original equation (1) has no restrictions of the
phase 	(t0). We have checked numerically that the results did not depend on the initial phase
in both cases if the initial amplitude is small enough.
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Figure 2. Dynamics of the system (4)–(5) (lines 1 and 3) and equation (1) (lines 2 and 4) for linear
dependence of the forcing frequency �(t) = αt at t � t0 = −400. μ = 0.0267, γ = 0, ε = 0.02.
Lines 1 and 2 – � = 1.342 (α = 0.00065); lines 3 and 4 – � = 1.754 (α = 0.00085) (� is defined
in equation (23)). The dashed line is the curve ABC from figure 1(a).
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Figure 3. Dynamics of the system (4)–(5) (lines 1 and 3) and equation (1) (lines 2 and 4) for linear
dependence of the forcing frequency �(t) = αt at t � t0 = 0. μ = 0.0267, γ = 0, ε = 0.02.
Lines 1 and 2 – � = 0.619 (α = 0.0003); lines 3 and 4 – � = 1.094 (α = 0.00053). Dashed line
is the line ABC from figure 1(a).

The first case, when t0 = −400 (see figure 2), is associated with the control path used
in [3]. Lines 1 and 2 show the dynamics of the systems (4)–(5) and (1), respectively, when
α is sufficiently small. The amplitude grows infinitely fluctuating around the dashed curve,
which is the curve ABC in figure 1(a). For equation (1), we use the value

√
u2 + u̇2 as the

amplitude of oscillations, corresponding to the transformation in (3). The ‘thickness’ of line 2
(the solution to equation (1)), owing to high frequency fluctuations, is caused by the difference
between the proposed circular orbits (3) and the real ones, which is appreciable for high
amplitudes. A similar growth of the amplitude has been observed earlier, see, e.g., [3], where
it was shown to be the result of the phase locking (the ‘autoresonance’ effect). In contrast,
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when α exceeds some threshold value, the amplitude is saturated (lines 3, 4) at a small level
and high amplitudes associated with the range BC in figure 1 becomes unattainable. A quite
similar behavior has been observed in the second case when the initial time is t0 = 0, see
figure 3.

It is convenient to characterize the threshold phenomena by the dimensionless parameter

� = αcr

μ2/3ε4/3
. (23)

Thus, the threshold value, found analytically in (22), corresponds to � = 1.072. The threshold
value found numerically for the system (4)–(5) for t0 = −400 is

� ≈ 1.696, (24)

and for the original equation (1) it is � ≈ 1.531. In the second case, when t0 = 0, the critical
value is found to be

� ≈ 1.009 (25)

for the system (4)–(5) and � ≈ 0.950 for the original equation (1).
We note that the same threshold as in (24) was found in [20]. It is larger then the value

� = 1.072 found analytically. On the other hand, for t0 = 0, the critical value (25) is rather
close to the analytical value. To comprehend these results we should analyze the evolution
of the phase 	(t) for the system (4)–(5). This is shown in figure 4, where trajectories
(	(t), A(t)) of the solutions are plotted and related to the location of extremum points of
the effective potential U(A,	) (13). The dashed lines in the figures are the locations where
U(A,	) has minima in the (A,	)-plane. The dotted lines indicate maxima of the potential.
In figures 4(a) and (b) � is greater than the analytical value 1.072, thus there are gaps where
the potential has no extremum points. In contrast, in figure 4(c), the parameter � < 1.072
and the potential has the extremum points in the whole range of A-values. The trajectories
(	(t), A(t)) shown in figures 4(a) and (b) represent the dynamics of the solutions in another
way than the curves 1 and 3 in figure 2. The main features of the dynamics are: in the initial
stage of the process (t < 0), before crossing the resonance, the system is phase locked in the
potential mimimum near 	 = 0. It provides a high probability to overcome the gaps, where
no extrema exist. If � < 1.696 (see figure 4(a)), the gap is not too wide and the system can
successfully overcome the gap and then phase lock in the minimum of the potential at high
amplitudes. This is reflected in figure 2 as infinite growth of the amplitude (line 1). In the
opposite case, when � > 1.696 (see figure 4(b)), the gap is so wide that the system, even
being phase locked at the initial stage, cannot be captured in the potential minimum at the
high amplitudes after passing the gap. Phase locking is then destroyed and saturation of the
excitation is observed (line 3, figure 2). It appears obvious that phase locking at the initial
stage causes an appropriate preparation of the system to overcome the gap, which explains the
observed increase of the critical value above the theoretical limit (22).

In the second case, at t0 = 0, the system starts just at the resonance (figure 3). There is
no initial phase locking and the trajectory starts near the unstable region of maximum of the
potential (at 	 ≈ −π/2, see figure 4(c)). In this case the dynamics becomes very sensitive to
the structure of the effective potential. The potential should have a global minimum for any
A in order that the ‘quasi-particle’ can be trapped—the oscillations phase locked. As a result
we observe the threshold (25) to be close to the analytical value � = 1.072.

7
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Figure 4. The trajectories (	(t), A(t)) of the system (4)–(5) (solid lines) at μ = 0.0267, γ =
0, ε = 0.02. (a) t0 = −400, � = 1.342 (α = 0.00065); (b) t0 = −400, � = 1.754 (α = 0.00085);
(c) t0 = 0, � = 0.619 (α = 0.0003). Dashed lines—minima of the effective potential U(	, A) at
fixed A; dotted lines—maxima of the effective potential.

4. Oscillator with linear dissipation

The minima of the effective potential for the oscillator with γ < 0 and σ = 0 are defined by
the equation

dU

d	
= α +

(
3

4
μA +

ε

A2
cos 	

)
(ε sin 	 − 4γA) = 0. (26)

As in the previous section we introduce the auxiliary function F(A) = max	 f (	,A), where

f (	,A) = −ε

(
3

4
μA +

ε

A2
cos 	

)(
sin 	 − γA

2ε

)
. (27)

The sufficient condition for the potential to have minima takes the form

α < F(A). (28)

The typical form of the function F(A) is shown in figure 5. It tends to infinity at A → 0
and becomes zero, when the amplitude achieves the maximum value at the point C: A = AC

(see figure 1(b)). In contrast to the dissipationless case, the function F(A) has no absolute
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Figure 5. The auxiliary function F(A) for μ = 0.0267, γ = −0.0096, σ = 0, ε = 0.02.

minimum and the condition (28) will define only a range of amplitudes where the effective
potential can have minima. It is seen from figure 5 that, in the range F(A) � 0.0004,

the minima of the potential are possible only for small amplitudes. On the other hand, for
F(A) � 0.0004, the possible range of the minima rapidly enlarges up to the maximum value
of the amplitude, AC = 4.17. Our goal of excitation is to attain amplitudes in the range of line
BC (figure 1(b)), that is in the range AB = 1.96 < A < AC = 4.17. We propose that such
excitations will only be possible if the range of minima of the potential covers high amplitudes
making the phase locking available, thus the threshold condition should be

α � 0.0004. (29)

To test this threshold numerically we apply the following controlling path:

�(t) =
{

αt, t0 < t � �0/α

�0, t > �0/α.
(30)

At initial times we use the linear chirping of the frequency and then, at t > �0/α, the
chirping is switched off. The parameter �0 is chosen so that the corresponding amplitude
A0(�0) lies on the curve BC (figure 1(b)). Because BC is the range of attractive focuses
of the system (4)–(5), the path after switching off the chirping should excite a stable cycle,
which is a solution of equations (7)–(8) for � = �0. Figure 6 illustrates the dynamics
of the system (4)–(5) using the controlling path (30), when the threshold condition (29) is
fulfilled.

Using the controlling path (30) and varying �0 we have studied the important problem
of what maximum value one can reach for the amplitude of oscillations for a given α. The
results are collected in figure 7 for t0 = −400 (solid line) and t0 = 0 (dashed line). The
curves confirm that the proposed value (29) is a proper threshold for reaching high amplitude
excitations. Especially, this is clearly observed from the case for t0 = 0 (dashed line),
where the attainable amplitudes undergo a jump as α crosses the critical value around 0.0004.
As it was discussed in the previous section, for the initial condition with t0 = 0, the dynamics
of the system is very sensitive to the detailed form of the effective potential, which becomes
apparent in the jump of amplitudes at the threshold.

9
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Figure 7. The maxima of the amplitude A0 attainable at a given α. Solid line: t0 = −400, dashed
line: t0 = 0;μ = 0.0267, γ = −0.0096, σ = 0, ε = 0.02.

The main characteristic of the phase-locking phenomena is the dependence of the critical
value αcr on the amplitude of forcing ε. In the dissipationless case it has the form of a power
law, αcr ∝ ε4/3. To study the dependence in the cases with dissipation we define the function

α0 = min
[0,A0]

F(A), (31)

where A0 is the amplitude of the stationary solution corresponding to �0 in the controlling
path (30). Then we suppose that the threshold condition, when the amplitude can attain the
value A0, is

α < αcr = α0. (32)
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Figure 8. The dependence of the critical value αcr on the amplitude of forcing ε for the path (30)
with �0 = 0.13 and t0 = 0; μ = 0.0267, γ = −0.0096, σ = 0. � —equation (1), the solid line
is αcr = α0(ε) obtained from equation (31).

The comparison of the theoretical value of the threshold (31), (32) with computations of
the original equation (1) is shown in figure 8. It is clearly observed that the behavior is
more complex than the power law behavior in the dissipationless case. The numerical and
analytically estimated thresholds exhibit a similar behavior except near the edges of the range
studied. For small ε no stationary cycles are observed for the prescribed controlling path. On
the other hand, for large ε, the numerical results defer from theoretical values, because of the
violation of the conditions of smallness. We note that the results above only slightly depend
on the other parameters γ and μ, while the inequality (10) is fulfilled.

5. van der Pol–Duffing oscillator

The minima of the effective potential for the oscillator with γ > 0 and σ > 0 are defined by
the equation

dU

d	
= α +

(
3

4
μA +

ε

A2
cos 	

)
(ε sin 	 − γA(4 − σA2)) = 0. (33)

Proceeding as in the previous sections, we can find the sufficient condition for when the
effective potential has minima,

α < F(A). (34)

For small γ (11), the typical shape of the function F(A) is shown in figure 9. Like for the
case with linear dissipation, F(A) becomes zero when the amplitude achieves the maximum
value at the point C (see figure 1(c)). It is seen from figure 9 that for F(A) � 0.005 the
possible range for the existence of minima rapidly enlarge. The goal of the excitation is to
attain amplitudes in the range of the line BC (figure 1(c)). We propose that the threshold
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Figure 9. The auxiliary function F(A) (equation (34)) for μ = 0.134, γ = 0.0008, σ = 50, ε =
0.05.
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Figure 10. The maxima of the amplitude A attainable at a given α for the path (30) with t0 = 0;
μ = 0.134, γ = 0.0008, σ = 50, ε = 0.05.

condition should be

α � 0.005. (35)

This is confirmed by the numerical results collected in figure 10. We have used the
controlling path (30) and varied �0 to reach maximum of the amplitude of oscillations for a
given α. We have only used the initial conditions with t0 = 0, because the range of variation
of � in this case is bounded to be around zero by the stability condition. One can see from
the curve that the expression in equation (35) may be used as a threshold, because the line
undergoes a jump as α crosses this critical value.

As in the previous section we introduce the theoretical threshold condition (31)–(32).
The comparison of this value with the computations of the original equation (1) is shown in
figure 11. We observe also here a behavior different from the power law behavior. For small
ε no stationary cycles are observed and the threshold condition disappears, for large ε, one
observes the increasing difference with analytic and numerical values.
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Figure 11. The dependence of the critical value αcr on the amplitude of forcing ε for the path (31)
with �0 = 0.2 and t0 = 0; μ = 0.134, γ = 0.0008, σ = 50. �—equation (1), the solid line is
αcr = α0(ε).

6. Conclusion

In this paper we have studied the excitation of high amplitude oscillations for the weakly
damped and driven nonlinear pendulum by means of control of the oscillations via the phase-
locking effect (‘autoresonance’). The effect is based on the capture of the phase of oscillations
by the external forcing with chirping frequency, when its amplitude and chirp rate obey some
threshold conditions. The applied averaged approach results in studying the dynamics of some
‘quasi-particle’ located in an effective potential where the coordinate of the quasi-particle is
the phase difference between the forcing and the oscillations. The threshold conditions are
associated with the existence of global minima in the potential, where the quasi-particle could
be trapped.

In the dissipationless case we have found the threshold conditions and compared them
with the direct numerical solutions of the original model for two different control paths. We
explained how the real thresholds can be associated with the theoretical ones taking into
account the complex dynamics of the quasi-particle. We have extended the approach first
to the systems with linear dissipation and then to the full van der Pol–Duffing equation.
The appreciable phase-locking phenomena for the dissipative systems can be observed only
for sufficiently small effects of the dissipation, when the systems may have bi-stable states.
It is important that the potential minima cannot be global in these cases and the threshold
conditions cover a finite range of amplitudes of excited oscillations. We have found that the
dependence of the critical chirp rates on the amplitude of forcing appearing in the threshold
conditions for dissipative systems exhibits more complex behavior than the power-like one in
the dissipationless case.
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